域。ChatGPT 在 GPT3.5 的基础上引入了 RLHF(reinforcement learning from human feedback)
技术,通过将人类的日常对话的语言习惯嵌入模型,并引入价值偏好,使得模型的输出满足人类的
意图。微调过程分为预训练、监督微调、设计奖励模型和反馈优化。桑基韬等人根据 ChatGPT 的对
话对象和定位将其应用分为四个层次:数据生成器、知识挖掘器、模型调度器和人机交互界面。在
多模态领域,Visual ChatGPT、MM-ReAct 和 HuggingGPT 让视觉模型与 ChatGPT 协同工作来完成视
觉和语音任务。
除此以外,许多类 ChatGPT 的大模型也同样在自然语言处理方面展示出来了较好的效果。
LLaMA 是应该从 7billion 到 65billion 参数的语言模型,不需要求助于专有的数据集。清华大学
提出了一种基于自回归填充的通用语言模型 GLM 在整体基于 transformer 的基础上作出改动,在一
些任务的表现上优于 GPT3-175B。
大语言模型,例如 GPT 系列、LLama 系列、Gemini 系列等,在自然语言处理方面取得了显著的
成功,展示了超强的性能,但仍面临诸如幻觉、过时的知识、不可追溯的推理过程等挑战。2020
年,由 Lewis 等人引入的检索增强生成方法,通过整合来自外部数据库的知识,然后再继续回答问
题或生成文本。这个过程不仅为后续阶段提供信息,而且确保响应是基于检测到的证据的,从而显
著提高输出的准确性和相关性。在推理阶段从外部知识库动态检索信息使 RAG 能够解决诸如生成幻
觉等问题。RAG 与 LLM 的集成得到了迅速的应用,提高了自然语言处理任务的性能,并且使得模型
能够更好地利用外部知识和背景信息。
知识抽取主要分为命名实体识别和关系抽取两方面。命名实体识别(NER)任务,旨在识别与
特定语义实体类型相关联的文本跨度。该任务最早于 1991 年由 Rau 等人提出。随着信息理解、人